The Fracture Risk Scale (FRS): Assessing and Managing Fracture Risk in Long-Term Care

Alexandra Papaioannou BScN, MD, MSc, FRCP(C), FACP

Professor of Medicine
Eli Lilly Chair

Michael G. DeGroote School of Medicine, McMaster University Executive Director, GERAS Centre, Hamilton Health Sciences

Lynn Nash MD, CCFP, FCFP

Associate Clinical Professor, Department of Family Medicine, McMaster University

OLTCC, September 2020

Presenter Disclosure

- Dr. Alexandra Papaioannou
- Relationships with commercial interests:
 - -Grants/Research Support: Amgen
 - -Speakers Bureau/Honoraria: Amgen
 - **Other:** Eli Lilly Chair, McMaster University, Osteoporosis Canada, Ontario College of Family Physicians, Canadian Institutes of Health Research

Presenter Disclosure

- Dr. Lynn Nash
- Relationships with commercial interests:
 - **Grants/Research Support:** None
 - -Speakers Bureau/Honoraria: None
 - **Other:** Family Physician, Ancaster, Ontario

Disclosure: Program

 This program has received financial support from The Canadian Institute for Health Research and the Ontario Ministry of Health and Long-Term Care in the form of an unrestricted educational/research grant.

 This program has not received in-kind support from any commercial/for profit organization

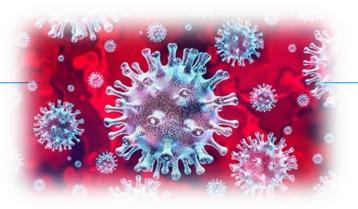
Potential for conflict(s) of interest: None

Mitigating Potential Bias

• Pharmacological therapy will be presented only as part of clinical recommendations determined using a GRADE approach (evidence-based approach) to guideline development

• All pharmacological therapy will be presented in its generic form

Objectives


At the conclusion of this activity, participants will be able to:

- 1. Recognize potential fracture risks in older adults living in long-term care (LTC)
- 2. Assess fracture risk using the Fracture Risk Scale (FRS)
- 3. To be able to implement the Clinical Assessment Protocol after assessing the Fracture Risk.

Biomechanics of falls in the frail elderly are different

What do we know about fractures within the context of the COVID-19 pandemic?

Added strain during COVID-19 pandemic on fracture care in orthopedic departments around the world

Hospital overcrowding and reorganization^{1,2}

operating rooms for elective surgeries transformed into ICUs, reorganized staffing to care for COVID-19 patients

Surgery needed for many osteoporotic fractures, followed-by inpatient care²⁻⁵

urgent surgery needed for hip and humerus fractures; surgery needed for pelvic, long-bone, complex fractures

Altered fracture management to limit COVID-19 spread^{6,7}

CT scans and swabs of surgery patients, number of outpatient visits limited due to social distancing

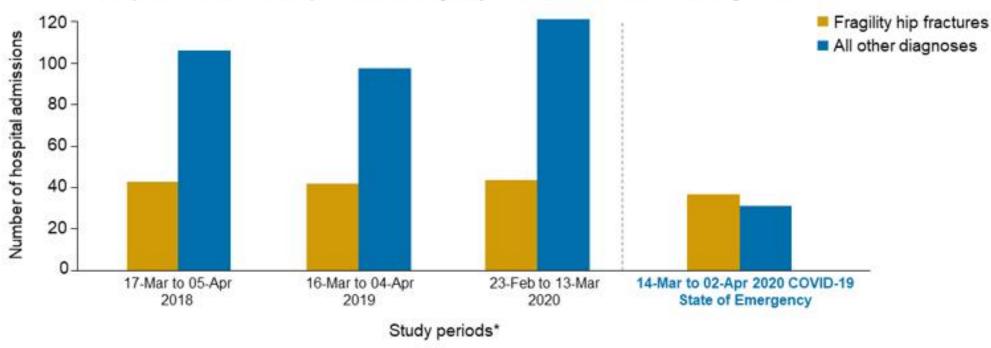
Strain on surgical capacity to operate on emergency cases^{1,2}

lack of staff (eg, anesthesiologists), operating theatres and post-surgery beds

Outpatient care needed for fractures^{4,6}

wound check, suture removal, evaluation of fracture healing, x-rays, cast application and removal, etc.

Altered surgical management of COVID-19 suspected fracture patients^{1,7,8}

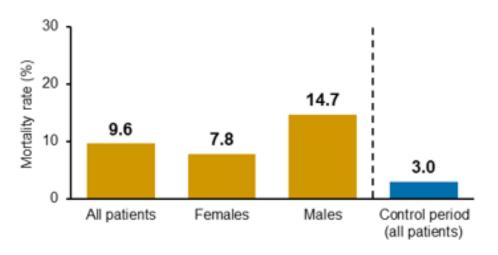

isolation pre/post surgery, operability criteria changes, anesthesiology care changes to allow operation with respiratory symptoms, operating equipment alterations to protect personnel

Munoz JM, et al. J Bone Joint Surg Am. 2020;http://dx.doi.org/10.2106/JBUS.20.00686; 2. Gómez-Barrena E, et al. J Surg Case Rep. 2020;4:1-3; 3. Zhu Y, et al. Int Orthop.
 2020;https://doi.org/10.1007/s00264-020-04575-0; 4. Ambrosio L, et al. J Experimental Orhopaedics. 2020;7:35 (https://doi.org/10.1186/s40634-020-00255-5); 5. lyengar K, et al. J Clin Orthop Trauma. 2020;https://doi.org/10.1016/j.jcot.2020.05.009; 7. Catellani F, et al. J Bone Joint Surg Am.
 2020;http://dx.doi.org/10.2106/JBJS.20.00617; 8. Tongu A, et al. Reg Anesth Pain Med 2020;http://dx.doi.org/10.1136/rapm-2020-101626.

Hospitalizations due to hip fractures during COVID-19 pandemic vs control periods at a Spanish tertiary hospital

Hospitalizations number due to hip fractures remained stable in emergency trauma setting, compared to other diagnoses

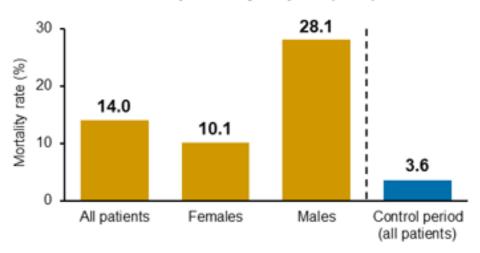
^{*}Four 20-day periods included Spain's beginning of the COVID-19 State of Emergency (14-Mar to 02-Apr 2020) and three control periods.


1. Nunez JH, et al. Injury. 2020; https://doi.org/10.1016/j.injury.2020.05.016.

Mortality in <u>all</u> hip fracture patients during COVID-19 pandemic

Spain1,*

Patients: 136 patients (75% female) aged ≥65 with hip fragility fracture during COVID-19 pandemic at 13 major hospitals


Mortality rate over 14 days of mean follow-up during COVID-19 pandemic (yellow) vs control period a year prior (blue)

Italy2,†

Patients: 121 (74% female) patients aged ≥41 with a hip fracture surgery during COVID-19 pandemic at 2 academic hospitals

Mortality rate over 8 weeks of follow-up during COVID-19 pandemic (yellow) vs control period a year prior (blue)

^{*11} hospitals had institutional changes in the infrastructure to accommodate COVID-19 and 2 were more severely affected with a decrease in hospital's capabilities to operate on fractures; control period was based on registry data observed during the same season prior year. *Hospitals were located in the cities of Piacenza and Parma which have been significantly affected by COIVD-19; control period examined in the study included a comparable 8-week period during a prior year at the same institutions.

Munoz JM, et al. J Bone Joint Surg Am. 2020; http://dx.doi.org/10.2106/JBJS.20.00686; 2. Maniscalco P, et al. Acta Biomed 2020;91:89-96.

Mortality in <u>all</u> hip fracture patients during COVID-19 pandemic: Potential contributors to surgery delays

All patients

COVID-19 screening

Screening for COVID-19 with CT scan and swabs prior to surgery, with results not always available ≤24 hours. 1-3

Reduced surgical capacity

Strain put on some hospitals' surgical capacity to operate quickly due to reformulation of medical/surgical personnel.²

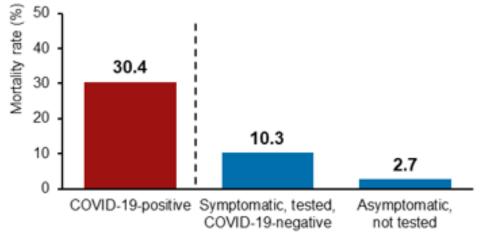
COVID-19-positive patients

Contraindications for surgery

Contraindications for surgery and anaesthesia due to low oxygen saturation, fever and systemic organ dysfunction1

Transfer and isolation

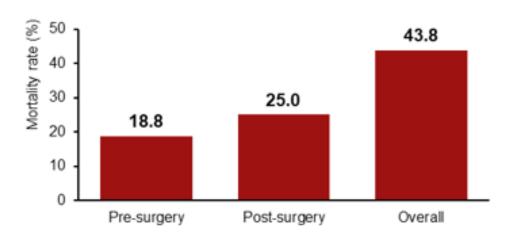
Transfer to isolation room and other care adjustments to protect staff and other patients.1,3


Catellani F, et al. J Bone Joint Surg Am. 2020;http://dx.doi.org/10.2106/JBJS.20.00686 3. Ambrosio L, et al. J Experimental Orhopaedics. 2020;7:35. CT=computed tomography.

Mortality in COVID-19-positive hip fracture patients

Spain^{1,*}

Patients: 136 patients (75% female) aged ≥65 with hip fragility fracture during COVID-19 pandemic at 13 major hospitals


Mortality rate over 14 days of mean follow-up in COVID-19-positive (red) vs COVID-19-negative (blue) patients

Italy2,†

Patients: 16 (38% female) patients aged 74-90 followed up post hip fragility fracture surgery at one hospital

Mortality before and 7 days after surgery in COVID-19-positive hip fracture patients

[&]quot;Study examined 136 patients (75% female) aged x65 presenting to ER with hip fracture during Spain's State of Emergency in one of 13 major hospitals and mortality was examined in COVID-19-positive patients tested with CT scan / swabs, COVID-19-negative patients with symptoms and also undergoing testing, and asymptomatic patients not undergoing testing, *Study examined 16 patients (38% female) with hip fragility fracture and COVID-19 presenting to a hospital in Lombardy, Italy. ER ER=emergency room. 1, Munoz JM, et al. J Bone Joint Surg Am. 2020; http://dx.doi.org/10.2106/JBJS.20.00686; 2, Catellani F, et al. J Bone Joint Surg Am. 2020; http://dx.doi.org/10.2106/JBJS.20.00617.

Mortality in <u>COVID-19-positive</u> hip fracture patients: Potential contributors to increased mortality

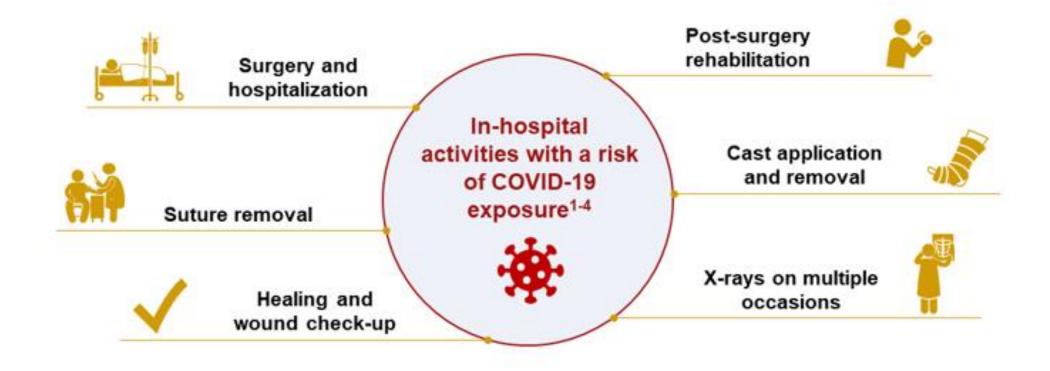
Older age

Because of older age, hip fracture patients are at higher mortality risk due to COVID-19.1

Susceptibility to pneumonia

Due to hip fracture, patients are also susceptible to pulmonary infection and pneumonia.2,3

Prolonged bed confinement


Prolonged confinement stay pre/post surgery makes it difficult to discharge lower respiratory tract secretions, potentially altering treatment process for COVID-19.4,5

Diminished incision healing

COVID-19-related weakness, fevers and immune responses may interfere with incision healing, thus prolonging rehabilitation and bed confinement and further increasing risk of hip surgery complications.⁴

Fracture patients and risk of in-hospital exposure to COVID-19¹⁻⁴

What is the impact of Vitamin D on COVID-19?

Vitamin D and COVID-19

Requirements for admission to the Intensive Care Unit, in patients hospitalized with COVID-19 (treated or not with calcifediol).

	Without Calcifediol Treatment (n = 26)	With Calcifediol Treatment (n = 50)	p value (1d712;2 ₎ Fischer Test
Need for ICU Not requiring	13 (50)	49 (98)	<0.001
ICU, n (%) Requiring ICU, n (%)	13 (50)	1 (2)	

^{*} Univariate Risk Estimate Odds Ratio for ICU in patients with Calcifediol treatment vs Without Calcifediol treatment: 0.02 (95 %CI 0.002-0.17).

^{**} Multivariate Risk Estimate Odds Ratio for ICU in patients with Calcifediol treatment vs Without Calcifediol treatment ICU (adjusting by Hypertension and T2DM): 0.03 (95 %CI: 0.003-0.25).

What is the impact of fractures on mobility in LTC residents?

Systematic Review – 28 studies with mobility outcomes

- Mobility 1 to 2 years following hip fracture is significantly worse than for matched control
- Number of people disabled after 2 years was 26 per 100 people with hip fracture for walking 10 feet and 22 per 100 for bed transfers
- People experiencing hip fracture were four times more likely to be unable to ambulate 2 years after fracture

Table 3 Outcomes for hip fracture patients and control participants not experiencing hip fracture

Study	Outcome	Follow-up time	Controls matched for	Hip Fracture	Control	P-value
Activity - Mobility						
Boonen 2004 [19]	Unable to walk independently	1 year	age, residence			
	<80 years			30 %	7 %	< 0.001
	>80 years			56 %	15 %	< 0.001
Magaziner 2003 [21]	Disabled walking 3 m (SE)	1 year	age, gender, walking ability	54 % (2)	21 % (2)	< 0.01
Marottoli 1992 [16]	Walk independently across room	6 mo (HF)	age, gender, physical function	15 %		NR
		1 year (Con)			72 %	
Norton 2000 [22]	Retain community mobility	2 years	age, gender	54 %	87 %	$P < 0.001^{e}$
Wolinsky 1997 [17]	Mean increase in no. lower body limitations	Median 2.3 years	nil ^f	1.75	0.75	$P \le 0.0001$
	Mean increase in no. upper body limitations			0.50	0.27	P < 0.001

Mobility recovery – 7 studies

• The bulk of recovery of walking ability occurred within 6 months after fracture.

Supplementary Table 1 Outcomes from studies reporting activity, participation and accomm	nodation outcomes at multiple follow-up times after hip fracture
--	--

Study	Outcome	Pre-fracture	Follow-up time					
			3-5 mo	6-9 mo	9-18 mo	19 mo – 2 yrs	3-5 years	6-10 years
Activity - Mobility	/							
Borgquist 1990	Walking (% survivors)	95%	73%		80%		80%	76%
Griffin 2015	Walking regularly:							
	indoors without aids ≤80 years	66%	37%		49%			
	indoors without aids >80 years	46%	14%		20%			
	outdoors without aids ≤80 years	51%	18%		26%			
	outdoors without aids >80 years	29%	6%		8%			
Kitamura 1998	Walking alone outdoors (± assistive device)	68%	51%	•	58%	58%		
	Walk alone outdoors + helper	8%	13%		10%	8%		
	Walk alone indoors (± assistive device)	11%	10%		7%	9%		
	Walk alone indoors + helper	8%	10%		8%	6%		
	Sit/wheelchair	3%	11%		9%	11%		
	Bedridden	2%	5%		8%	8%		
Tsuboi 1998	Walking alone outdoors (± assistive device)	68%	51%		56%			
Magaziner 1990	Walk independently or with 1 stick	87%	26%2		54%			
Magaziner 2003	Walking 3m without assistance	74%			46%	47%		
Neuman	New total locomotion dependence		28%		27%			
Samuelsson 2009	Walking independent/1 stick	51%	25%			28%		
	2 sticks/frame	45%	61%			54%		
	Non-walking	4%	15%			18%		

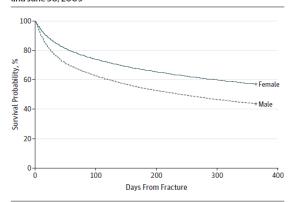
Mobility recovery

• Between 40 and 60 % of study participants recovered their pre-fracture level of mobility

Table 4 Proportion of survivors that recover their pre-hip fracture levels of activity, participation or health outcomes

Study	Outcome measure	Pre-fracture residence	Surgical cohort	3–4 months	6 months	1 year	2 years
Activity – Mobility							
Bentler 2009 [14]	Mobility activities without difficulty ^e	NR	N				47 %
Crotty 2000 [49]	Level of ambulation ^b	Community	Υ	69 %			
		LTC	Υ	58 %			
Holt 2008 [62]	Walk unaided and unaccompanied	Mixed	Υ				
	Ages 75–89			22 %			
	Ages ≥95			2 %			
Keene 1993 [41]	Walk unaided	Mixed	N			40 %	
Koval 1998 [44] ⁹	Ambulatory ability	Community	Υ	22 %	38 %	47 %	
Shah 2001 [47] ⁹	Ambulation independence	Community	Υ			44 %	
Magaziner 2000 [43]	Walk 3 m without assistance ^{a, d}	Community	N			60 %	63 %
Norton 2000 [22]	Retain community mobility ^d	Mixed	U				54 %
Osnes 2004[25]	Walking independence ^f	Mixed	U			44 %	
Pereira 2010 [39]	Remain stable on BOAS ^d					55 %	
Vochteloo 2013 [37]	Mobility	Mixed	Υ	46 %		48 %	
	Mobility without aid		Υ	27 %		40 %	
	Mobility with aid		Υ	58 %		58 %	

LTC: Hip Fractures, mortality and mobility impairment

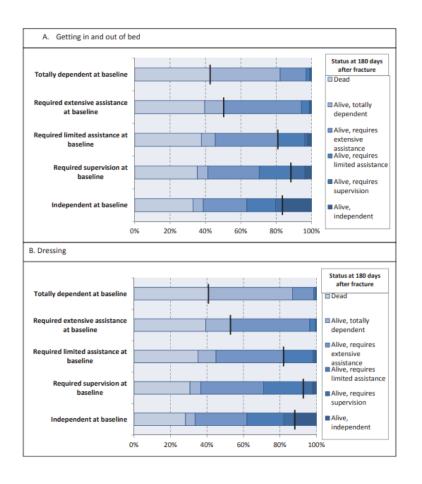

By 180 days post-hip fracture (N = 60,111):

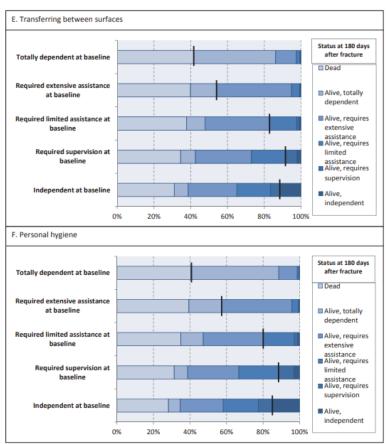
- 36% died
- 28% new total dependence in mobility*

By 365 days post-hip fracture (N = 52,914)

- 47% died
- 27% total dependence mobility*

Figure 1. Survival at up to 365 Days Among 60111 US Long-term Care Residents Hospitalized With Hip Fracture Between July 1, 2005, and June 30, 2009

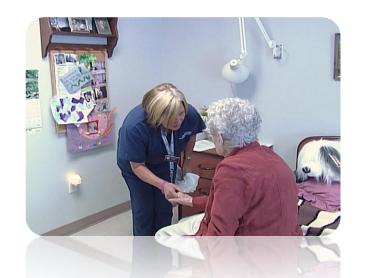

Male patients demonstrate a lower probability of survival than women at all time points after fracture (P < .001 by log-rank test).



^{*} Independent at baseline

What is the impact of fractures on LTC residents' ability to perform activities of daily living?

Marked changes in ADLs – mobility in bed, dressing, transferring and person hygiene 180 days after fracture



How can fracture risk be assessed in long-term care?

Issues with Fracture Risk Assessment in LTC

- Tools have been well characterized in community dwelling populations (CAROC, FRAX) but are not validated for LTC
- Provide 10-year fracture risk not helpful given that the average length of stay in LTC is 18 months
- Missing LTC risk factors applicable for the LTC population

Meet Mrs. Andrews

87 year old woman just admitted to LTC – six months following the death of her husband; she was unable to care for herself at home

Mrs. Andrews

- History:
 - moderate dementia
 - wrist fracture 8 years ago from a fall while walking
 - prescribed antidepressant for 2 years; PPI recently prescribed while in hospital
 - Prior fall
 - no osteoporosis diagnosis/ no osteoporosis medications
 - •family reported recent weight loss and height change from 5'5" (165 cm) to 5'2"(157 cm) on admission
 - Height loss prompted a lateral thoracolumbar x-ray ordered
 - 2 vertebral fractures found

Mrs. Andrews

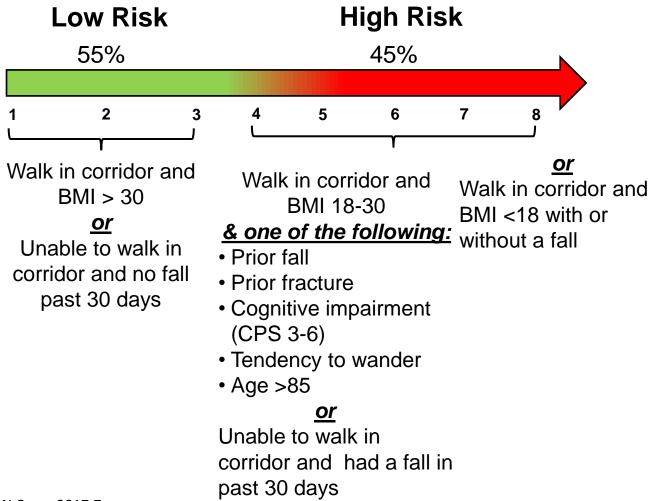
- LTC Assessment:
 - Appetite seems good and she is willing to eat food without difficulty
 - No significant dysphagia noted by staff
 - Wandering frequently around the home
 - Able to walk in corridor independently
 - •BMI <18

At what level of risk for fractures is Mrs Andrews?

How can you estimate fracture risk?

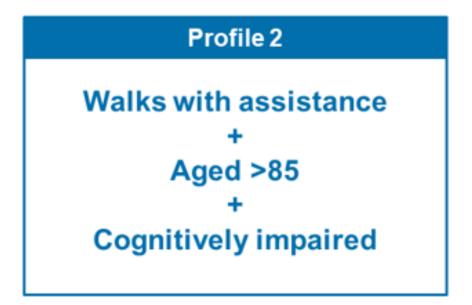
Fracture Risk Scale

Assessing fracture risk for LTC residents to put strategies into place to prevent fractures



The FRS:

- ✓ Predicts hip fractures for LTC residents
- ✓ Requires no additional documentation or resources
- ✓ Does not require BMD testing
- ✓ Validated across Canada
- ✓ Can improve care, quality of life, and prevent fractures
- ✓ Supports the fracture prevention recommendations for LTC, which stress the importance of identifying fracture risk.


Fracture Risk Scale Scores

Fracture-risk related frailty characteristics^{1,2}

Research in long-term care setting across Canada by the GERAS group has validated a Fracture Risk Scale to help **predict hip fracture over a 1-year time period in older frail adults without needing BMD testing**, based on two patient profiles:1,2

Profile 1 Walks independently + Low body weight* + Fall ≤6 months

^{*} Body Mass Index <18

Ioannidis G, et al. BMJ Open. 2017; 7:e016477. doi:10.1136/bmjopen-2017-016477;

GERAS Centre for Aging Research. https://www.gerascentre.ca/the-fracture-risk-scale-frs/ (Accessed May 27, 2020).

Where do I find the FRS score for my resident?

PointClickCare®

RAI-MDS (MDS 2.0) / LTCF

Outcomes Summary Report

What is the fracture risk for residents who are immobile?

- Fracture Risk Scale hip fracture risk
 - Inability to walk independently = low risk
 - Inability to walk independently + a fall in last 30 days
 high risk
 - May underestimate vertebral fractures and potential for these with transfers or shifting in bed
- Immobilization is a risk factor for bone loss and increases risk for osteoporotic fractures¹

Some Cautions

- FRS assesses risk for hip fracture but <u>may</u> underestimate the risk for vertebral fractures
- FRS calculates risk based on variables available in the RAI-MDS 2.0 – other risk factors may exist that are not included

How can we manage fracture risk? The Fracture Risk CAP

Clinical Assessment Protocols (CAP)

- MDS-RAI FRS algorithm alerts assessor to identified fracture risk
- Care plans/ protocols are identified to address risk
- CAP goals of care:
 - Identify and change underlying risk factors for fractures
 - Review and monitor supplements and medications related to bone health and falls risk
 - Recognize the importance of adequate nutrition and falls prevention for fracture prevention

Recommendations for Fracture Prevention in LTC¹

- Published in 2015; first of its kind aimed at LTC
- Integration of osteoporosis and falls assessment and management to reduce fractures
- Developed using GRADE approach,² considering:
 - Quality of evidence
 - Balance of benefits and harms
 - Values and preferences
 - Resources

Early release, published at www.cmaj.ca on September 14, 2015. Subject to revision. AAJ GUIDELINES

Recommendations for preventing fracture in long-term of

Alexandra Papaloannou MD MSc, Nancy Santeso RD PhD, Suzanne N. Morin MD MSc, Sidney Feldman MD, conthain D. Adachi MD, Richard Critiy Sis: MD, Lora M. Glangegorio PhD, Susan Jaglai PhD, Robert G. Josow MBSS, Sharon Kasalalanne PhD, palk Idat MD, Andrea Moser MD MSC, Loura Pickard MA, Hope Weller RD PhD, Susan Whitting PhD, Carly J. Skidmore MSc, Angela M. Cheung MD PhD; for the Scientific Advisor. Ground of Deteoprocing Canada.

CMU Podcaste: author interview at https://ioundcloud.com/cmajpodcasts/1

The York Control market product product and the control product produc

are distressing for Versheal fractures authors, other wisdoms 30% (fee at least most received and received an

"See The See "See The See "See The See The See

Q2011 BIT2147 Canada Inc. or Ea Bornson

OW

- 1. Papaioannou, A. et al. CMAJ, 2015; 187(15): 1135-44.
- 2. Guyatt, GH. Et al. BMJ 2008; 336:1049-51.

Interpreting the Recommendations

Implications	Strong Recommendation "we recommend"	Conditional Recommendation "we suggest"
for patients/residents	Most individuals in this situation would want the recommended course of action, and only a small proportion would not	The majority of individuals in this situation would want the suggested course of action, but many would not
for clinicians	Most individuals should receive the intervention	Clinicians recognize that different choices will be appropriate for each individual and that clinicians must help each individual arrive at a management decision consistent with his/her values and preferences

www.gradeworkinggroup.org

BRIEF CLINICAL REFERENCE GUIDE:

interRAI Fracture Risk Scale (FRS)

Identifies fracture risk in the next year. Scored from 1 (lowest risk) to 8 (highest risk).

Located in the Outcome Summary Report Page (PointClickCare®: MDS 2.0, interRAI LTCF).

RACTINE VITTAM	LOW RISK			HIGH RISK				
FRS Score	1	2	3	4	5	6	7	8
Hip Fracture (yearly incidence)	0.6%	1.8%	2.5%	3.1%	5.0%	6.8%	7.8%	12.6%
% LTC Residents	13.5%	18.3%	24.1%	17.0%	16.6%	2.1%	8.0%	0.5%
at Fracture Risk	56% of all LTC residents			44% of all LTC residents				
Treatment Considerations	 Vitamin D: 800-2000IU Calcium: 1200mg (daily total diet & supplement) Exercise: functional strength & balance 			• Calci	nin D: 800- um: 1200 cise: funct oporosis i protectors	mg (daily to ional stre medicatio	ngth & ba	

Papaioannou et al. Recommendations for preventing fracture in long-term care. CMAJ 2015 187(15), 1135–1144.

Ioannidis et al. Development and validation of the Fracture Risk Scale (FRS) that predicts fracture over a 1-year time period in institutionalized frail older people living in Canada: an electronic record-linked longitudinal cohort study. BMJ Open 2017;7e016477.

McArthur et al. Developing a Fracture Risk Clinical Assessment Protocol for Long-Term Care: A Modified Delphi Consensus Process, JAMDA

... Back to Mrs. Andrews

Mrs. Andrews' FRS score

Mrs. Andrews:

- is able to walk in the corridor (independently)
- has a BMI <18
- had a fall in last 180 days

• FRS Score = 8 Mrs. Andrews is at the highest level of risk. (one year hip fracture risk = 12.6%)

Treatment recommendations for Mrs. Andrews

Calcium & Vitamin D

Recommendation:

Dietary interventions to meet the recommended dietary allowance (RDA) for calcium (>70 = 1200 mg calcium; 3 servings of dairy or dairy equivalents)¹

- She is able to get sufficient calcium from her diet, so no supplement required
- Added 1,000 UNITS vitamin D daily

Recommendation:

Daily supplements of 800 – 2000 UNITS vitamin D₃

Treatment recommendations for Mrs. Andrews Suggi

Suggestion:

Balance, strength and functional training exercises only when part of a multifactorial intervention to prevent falls

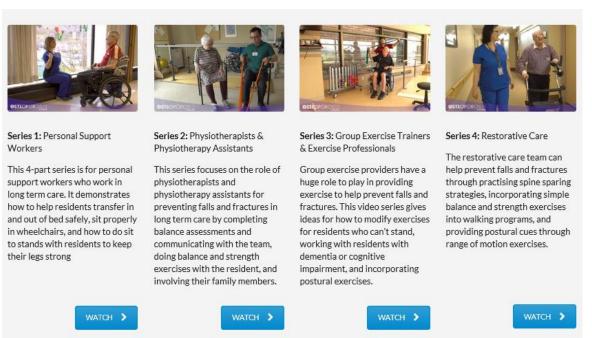
Exercise

 Conduct an individual physio assessment to determine whether she would benefit most from an individual or group exercise program, focusing on balance, strength and functional exercises

www.gerascentre.ca/ltcseries

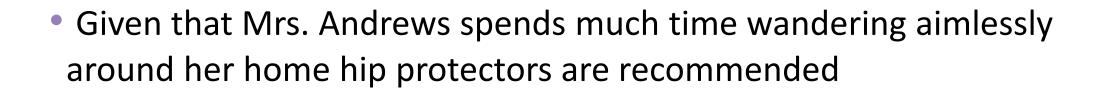
www.osteoporosis.ca

Functional strength training



Sit to stand exercises

Worth watching...


Long Term Care Series

Videos targeted at Personal Support Workers, Physiotherapists, Group Exercise Instructors, and Restorative Care workers in LTC

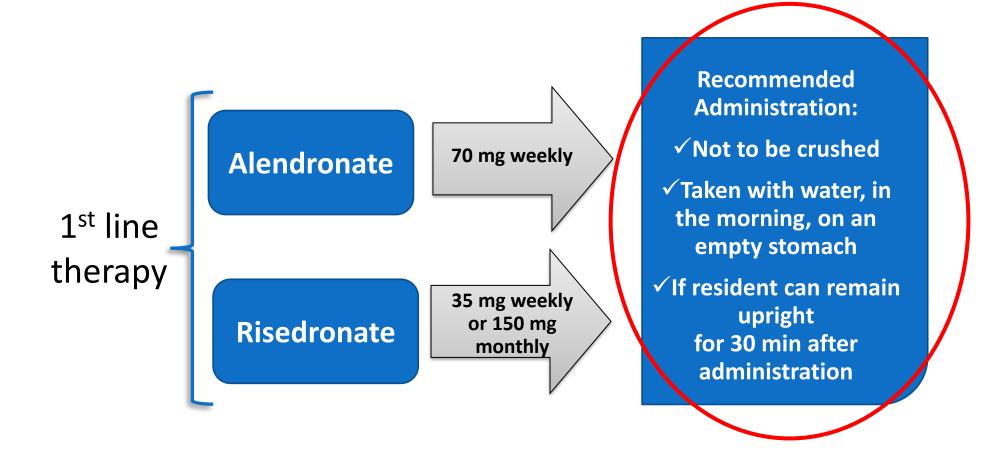
Treatment recommendations for Mrs. Andrews

Hip protectors

Recommendation:

For residents who are mobile and at high risk of fractures, hip protectors are recommended.

Can hip protectors prevent fractures? Summary of evidence


- Moderate quality evidence from systematic review showed relative risk reduction in hip fractures = 18% (95% CI, 0 to 33%) among older persons wearing hip protectors in institutional settings
- Over 1 year, per 1000 residents:
 - 4 fewer hip fractures wearing hip protectors may be likely
 - 11 fewer fractures among those at higher risk
 - 1 more pelvic fracture for older persons not at high risk
 - 8 more pelvic fracture for older persons at high risk.
- Moderate evidence, probably little or no difference in frequency of falls or adverse events requiring medical attention. Minor adverse events, e.g. skin irritation, occurred in < 2% people wearing hip protectors.

More about Mrs. Andrews

- She is able to swallow and has normal kidney function
- Despite her vertebral fractures and underlying dementia she is well.
- She has reasonable life expectancy (it would be a surprise if she died within the next 12-months)
- Goals of care are active treatment and her substitute decision maker wants therapy if it will help prevent future fractures.

LTC recommendations for HIGH RISK residents...

Contraindications

Alendronate and risedronate are not recommended for older persons with severe renal insufficiency (creatinine clearance <35 mL/min or <30 mL/min, respectively)

For HIGH RISK Residents + Difficulty Taking Oral Medications, we recommend..

Denosumab* (60 mg subcut twice yearly)

Zoledronic Acid (5mg IV yearly)

*Funding differs by province

*This recommendation applies to the older persons who have difficulty taking oral medications due to dysphagia, an inability to sit up for 30 min, cognitive impairment or intolerance

Contraindications

Denosumab:

- While denosumab can be prescribed to residents with renal impairment, they are at higher risk of developing hypocalcemia
- Drug holidays not recommended as benefits are lost after discontinuation:
 - increased rate of vertebral fracture after one year, similar to those who never took the drug

Contraindications

Zoledronic Acid:

- Health Canada advises that caution is necessary for people who receive other medications that could affect renal function.
- Creatinine clearance should be monitored before and periodically after treatment.
- Appropriate hydration (500 mL of water) is necessary before and after treatment.
- This medication should not be administered in people with severe renal impairment (CrCl <30 mL/min).

Number Need to Treat (NNT)

First Line Drug Therapies to prevent fractures in older persons at High Risk of fractures in long-term care¹

	Bisphosphonates ²					
		Alendronate	Risedronate	Zoledronate	Denosumab ³	Teriparatide ³
Hip Fractures	Number of hip fractures prevented per 1000 treated Confidence interval	24 fewer (14 - 32 fewer)	23 fewer (15 - 31 fewer)	22 fewer (12 – 29 fewer)	22 fewer (6-32 fewer)	26 fewer (40 fewer to 34 more)
	NNT to prevent one hip fracture	42 (71 - 31)	43 (67 - 32)	45 (83 - 34)	45 (167 - 31)	n/a
Vertebral	No. of vertebral fractures prevented per 1000 treated Confidence Interval	89 fewer (35-124 fewer)	97 fewer	120 fewer (62 - 152 fewer)	124 fewer (60- 155 fewer)	130 fewer (79 - 162 fewer)
Fractures	NNT to prevent one vertebral fracture	11 (29 - 8)	10 (18 - 8)	8 (16 - 7)	8 (17 - 6)	8 (13 - 6)

¹Quality of evidence was assessed as moderate. Estimated effects assumed baseline risk of hip fx at 6% and vertebral fx at 20%

²Primarily with at least 500 mg of calcium, and with/without vitamin D

³With calcium and vitamin D

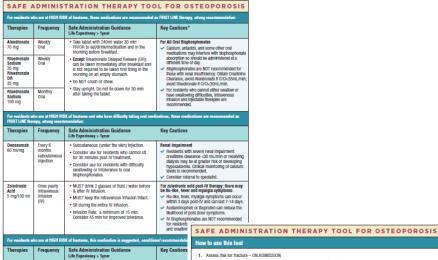
Multifactorial interventions

- Any combination of interventions that are tailored to an individual's risk to reduce falls.
- Such interventions may include:
 - medication reviews, assessment of environmental hazards, use of assistive devices, exercise, management of urinary incontinence and educational interventions directed to staff

Suggestion: For all residents, multifactorial interventions that are individually tailored to reduce the risk of falls and fractures are suggested.

Web-based resources

FREE FRACTURE PREVENTION TOOLKIT


Developed for fracture prevention in long-term care.

www.gerascentre.ca/osteoporosis-strategy-for-long-term-care/

Safe Administration Tool

For residents w	For residents who are at HIGH RISK of fractures, this medication is suggested, conditional recommendati				
Therapies	Frequency	Safe Administration Guidance Life Expectancy > 1year	Key Cautions		
Teriparatide 20 mog subcut	Daily subcutaneous injection	• Injection	✓ REFER to pr for informati ✓ Cost may re		

Iways check cautions listed in product monographs provided in "eCPS (Compendium of Pharmaceutical

Permission is required to modify, adapt or translate this lool (Email: Papalsannoul@htsc.ca). This document is only to be used as

•	ow to use this tool						
	Assess risk for fracture – ON ADMISSION The 2015 Fracture Prevention Recommendations for Frall Older Adult as those who meet one of the following:	s1 establish HIGH RISK Individuals					
	Had a prior hip fracture Had a prior vertebral fracture	Has a vertebral fracture present (if chest x-ray orders screen for vertebral fracture)					
	 Had more than one prior fracture (exclude hands, feet and ankle) Recently used glucocorticolds (e.g. sterolds, prednisone) and had one prior fracture 	 Has been readmitted from hospital (post-fracture). 					

Pharmacotherapy is not appropriate for individuals with a lifespan < 1 year. Recommendations for calcium and vitamin D Intake's

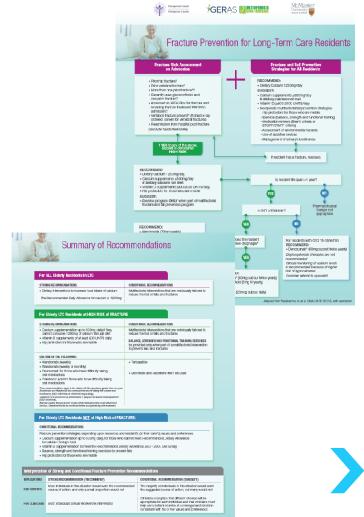
 1200 mg/day of calcium through diefary interventions or calcium supplementation up to 500 mg/day (If cannot meet target through diet) Vitamin D supplementation, 800 – 2000 UNITS/day

What does a strong/conditional recommendation ² mean?					
Implications	Strong Recommendation (RECOMMEND)	Conditional Recommendation (SUGGEST)			
For patients/ residents	Most individuals in this situation would want the recommended course of action, and only a small proportion would not.	The majority of Individuals in this situation would want the suggested course of action, but many would not.			
For clinicians	Most individuals should receive the intervention.	Clinicians recognize that different choices will be			

residents	recommended course of action, and only a small proportion would not.	the suggested course of action, but many would not.		
For clinicians	Most individuals should receive the intervention.	Clinicians recognize that different choices will be appropriate for each individual and they must help each individual arrive at a management decision consistent with his/her values and preferences.		
What do I need to know about Limited Use Codes ³ (Ontario)?				

High Risk for Fracture* DENOSUMAB LIMITED USE: Code 428 female 515 males Failed Other Available Osleoprosis Therapy (tragility fracture or evidence of decline in bone mineral density below pre-treatment baseline levels despite adherence for one year). pre-treatment and the pre-present the present the pres (esophageal stricture or achaiasia) or inability to stand or sit upright for at least 30 minutes **701 FDRONIC ACID** LIMITED USE: Code 436 For treatment of osteoporosis in postmenopausal women for whom bisphosphorates are contraindicated due to abnormalities of esophagus (esophagus stricture or achalasia) or inability to stand or sit upright for at least 30 minutes. High Risk defined as: A prior fragility fracture and a moderale 10 year fracture risk (10-20%) or A high 10 year fracture risk (>20%) or A high 10 year fracture risk lose fracture risk is less then the thresholds define above, a high fracture risk based on evaluation of clinical risk factors for fracture.

Papaloannou A et al. CMAJ. 2015; 2www.gradeworkinggroup.org; 3www.lucodes.ca mission is required to modify, adapt or translate this tool (Email: Papalou This document is only to be used as a support decision tool.


May 2018

Order Set

Quick Reference Guide

Awareness Raising Tools for Residents and Families

KEEPING IT TOGETHER!

Osteoporosis is a condition that causes bones to become thin, decreasing bone strength and leading to increased risk of breaking a bone. Osteoporosis is often called the 'silent thief' because bone loss occurs without symptoms. Surprisingly often, people find out they have osteoporosis after they have fractured a bone. The most common fractures are in the hip, spine, wrist and shoulder.

WHY? Fractures in Long-Term Care are very common. They can cause severe pain, disability and be fatal. If we can reduce serious falls and fractures, we can achieve reduced hospital transfers, immobility, pain and most importantly improve quality of life!

HOW? Start the conversation on how to reduce fractures! Know your risk, become aware of your freatment options and work together.

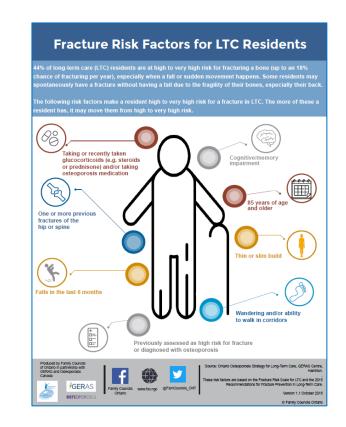
STARTING THE CONVERSATION ON OSTEOPOROSIS

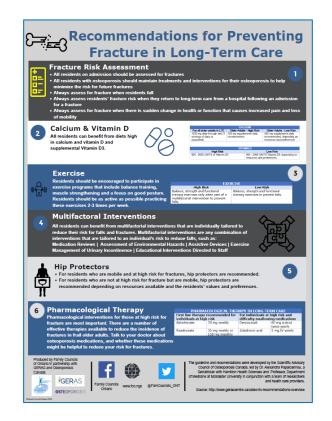
ASK YOURSELF

- Have I ever broken a hip or bone since age
- 55?
 Has anyone in my family broken a bone
- or had osteoporosis?

 Has my back posture changed so I am more hunched over?
- Am I shorter than in my early adulthood?
- Do I take medication for osteoporosis?
- Have I been asked my goal of care?

ASK YOUR LEADERSHIP/ ADMINISTRATION


- How can we make sure residents have diets rich in calcium and vitamin D?
- How can we make sure residents benefit from vitamin D supplements?
- Are our staff trained to identify residents at risk for fractures?
- Do we have osteoporosis and fracture prevention as part of our falls program?
- What interventions do we have to prevent factures and fractures from falls?


ASK YOUR PHYSICAN/ CARE TEAM LEADS

- Am I on or should I be on osteoporosis
- medications?

 Am I on the appropriate Calcium and Vitamin D therapy?(older adults)
- Am I doing the right resistance and balance exercises to strengthen my muscles and improve
- my balance?

 Am I doing safe transfers to protect my spine and other hones?

Conclusions

The FRS:

- Builds on the 2015 recommendations for fracture prevention and supporting tools
- Does not require BMD testing
- Requires no additional documentation automatic score calculation
- Is effective at discriminating and predicting hip fractures in LTC residents
- Has the potential to significantly increase fracture risk identification and management and reduce fractures
- Will reduce pain, suffering, disability, and reduced quality of life associated with fractures

Conclusions

Integration within the RAI-MDS:

- Minimizes the workload of LTC professionals
- Improves health planning
- Promotes teamwork and interprofessional practice
- Promotes resident safety

